Leonhard Euler - BioMania
O melhor portal biológico da internet!



176 Slides Power Point grátis

Só baixar, editar e começar a usar.

Leonhard Euler


  Biografias

A contribuição de Euler para a ciência matemática teve como um de seus pilares a Introductio in analysim infinitorum (1748; Introdução à análise dos infinitos), obra que constitui um dos fundamentos da matemática moderna.
Leonhard Euler nasceu na cidade suíça de Basiléia em 15 de abril de 1707, numa família tradicionalmente dedicada à pesquisa científica. A precocidade e o brilhantismo de seus primeiros trabalhos despertaram o interesse dos principais matemáticos de sua época, como Jean Bernouilli e seus filhos, e converteram-no, aos vinte anos, em membro associado da Academia de Ciências de São Petersburgo, para onde se transferira. Por meio de livros e monografias que apresentou à Academia, Euler aperfeiçoou os conhecimentos da época sobre cálculo integral, desenvolveu a teoria das funções trigonométrica e logarítmica e simplificou as operações relacionadas à análise matemática. Sua contribuição para a geometria analítica e para a trigonometria é comparável à de Euclides para a geometria plana. A tendência a expressar operações físicas e matemáticas em termos aritméticos incorporou-se desde então aos procedimentos das ciências exatas.
Em conseqüência de um problema neurológico, Euler perdeu em 1735 a visão de um olho. Chamado em 1741 por Frederico II o Grande, da Prússia, foi honrado com a dignidade de membro da Academia de Berlim.
Ao perder o favor real, em 1766, transferiu-se de novo para a corte de São Petersburgo, a cujo trono havia subido Catarina II a Grande, e ali estendeu sua atividade ao estudo da mecânica, óptica, acústica e astrofísica. Estudou o movimento lunar, o fenômeno dos eclipses e as posições relativas dos astros.
As principais descobertas de Euler se deram no campo da teoria dos números. Ele também foi responsável pela incorporação de numerosos símbolos à linguagem matemática, como   para designar somatório;  e para denominar a base dos logaritmos naturais ou neperianos e a, b, e c para os lados de um triângulo e A, B e C para seus ângulos. Euler não esmoreceu em sua atividade nem mesmo quando ficou cego, aos sessenta anos. Morreu em 18 de setembro de 1783, em São Petersburgo.

Veja também: