Força - BioMania
O melhor portal biológico da internet!



Força


 Biofísica

O conceito de força foi enunciado pela filosofia determinista da ciência, cuja concepção do universo prevaleceu até as primeiras décadas do século XX. De acordo com esses princípios, todo efeito decorre de uma causa imediata. Com a evolução das idéias, no entanto, esse conceito incorporou elementos da estatística, da probabilidade e da teoria da relatividade.
Força, em física, é todo agente capaz de alterar o estado de movimento ou repouso de um corpo, imprimindo-lhe uma aceleração a favor ou contrária ao movimento. A noção de força, imaginada e comprovada empiricamente por Newton no século XVII, foi o ponto de partida para o estudo da física até que os conceitos eletromagnéticos sobre campo de energia reduziram, de certa forma, seu alcance. Os enunciados de Newton foram abalados quando, no começo do século XX, Albert Einstein divulgou a teoria da relatividade e, com esta, restringiu a validade das hipóteses newtonianas a sistemas e corpos móveis dotados de velocidades muito inferiores à da luz. Nesses sistemas físicos, porém, os princípios de Newton verificam-se com tal exatidão que a parte da física que os estuda é considerada  ciência exata, não experimental, regida por leis ideais e axiomáticas.
Consideradas nos primórdios da física como agentes localizados e independentes uns dos outros, as forças passaram a ser estudadas como integrantes de um campo de forças, que a física moderna define como a porção do espaço situado ao redor de um corpo sobre a qual ele exerce atração. Um segundo corpo submetido ao campo de forças do primeiro intervém com sua própria atração para modificar o campo originado pelo anterior e assim sucessivamente.


Composição e par de forças. As grandezas que definem uma força em todos os seus aspectos são: ponto de aplicação, direção, sentido e intensidade. Representa-se graficamente uma força mediante um vetor (seta), dado ter ela direção e sentido. Dessa maneira, define-se como composição de forças a substituição de duas forças determinadas por outra equivalente quanto ao efeito dinâmico que produz.
Para que se produza uma composição de forças, cujo vetor final se denomina resultante, pode-se partir de quatro sistemas de forças: o de forças concorrentes, o de forças paralelas de mesmo sentido, o de forças paralelas de sentidos contrários e o par de forças. Define-se par de forças como o sistema de forças paralelas de idêntica magnitude e sentidos opostos. Os efeitos produzidos pelo par de forças e pelas diversas combinações de forças constituem a base do estudo do equilíbrio, dos fenômenos de fricção e de estruturas como a roldana, a alavanca, o conjunto móvel de êmbolo (ou pistão) e cilindro e outras máquinas simples.


Leis do movimento. As leis básicas de Newton para o movimento resumem-se em três enunciados simples:
(1) Todo corpo permanece em movimento retilíneo uniforme, a não ser que forças externas o obriguem a modificar sua trajetória (princípio da inércia).
(2) A variação do movimento é diretamente proporcional à força motriz a que o corpo é submetido e se dá sempre na direção e no sentido da força resultante (lei fundamental do movimento).
(3) A toda ação corresponde uma reação igual e contrária (princípio de ação e reação).
Essas leis constituem os axiomas da dinâmica, parte da mecânica que estuda as forças como origem dos movimentos. A cinemática limita-se ao estudo das características dos movimentos, sem considerar suas causas.
Da primeira lei de Newton depreende-se o conceito de inércia, ou tendência dos corpos a manterem seu estado de movimento ou repouso. Para determinar quantitativamente o valor da inércia é necessário conhecer a massa inerte do corpo, usualmente dada em quilogramas (unidade fundamental de massa).
O segundo princípio considera a quantidade de movimento dos corpos, ou momento linear, que depende da massa e da velocidade de deslocamento destes, e a forma pela qual pode ser modificada. Determina-se a quantidade de movimento pela multiplicação da massa do corpo em repouso pela velocidade de seu movimento. Uma vez, porém, que as variações da quantidade de movimento não são instantâneas, mas se produzem por efeito da inércia, a velocidade dos corpos altera-se de modo progressivo, independentemente da força a que sejam submetidos. Conseqüentemente, as forças produzem acelerações, ou seja, modificações da velocidade durante o tempo em que se mantêm ativas. Dado seu caráter instantâneo, para calcular exatamente essas variações se emprega a disciplina matemática chamada cálculo diferencial e integral, também desenvolvida por Newton.
A terceira lei é provavelmente a mais intuitiva. Sua originalidade reside no fato de inferir o efeito recíproco exercido entre os corpos e a Terra, ou seja, o fato de que esta submete todo corpo situado em sua superfície a uma força igual ao peso dele, mas o corpo também atua sobre a Terra com intensidade e direção idênticas e sentido contrário. Segundo esse princípio, a Terra é imperceptivelmente afetada pelos corpos que estão em sua superfície e, em proporção maior, pelos astros do sistema solar.
A unidade física que serve para medir a magnitude das forças é o newton, que equivale à aceleração de um metro por segundo ao quadrado, num corpo de massa inercial de um quilograma.


Ação de forças sobre partículas e corpos. A dinâmica das partículas é uma simplificação que facilita a compreensão da realidade física. Os conjuntos de partículas materiais podem integrar sólidos rígidos, em que as forças interiores não modificam os movimentos das partículas entre si. No caso contrário, formam-se sistemas de partículas livres ou sólidos elásticos.
O problema central da dinâmica de um sistema é a determinação de seu movimento, definido pelas massas das partículas que o formam, por suas forças interiores e pela ação de perturbações externas. Um sistema de partículas apresenta um centro de massa ou de gravidade único, de modo que o movimento do conjunto, submetido à influência de forças exteriores, evolui como se toda sua massa estivesse reunida nesse centro e nele atuasse a resultante de forças.
Um sólido rígido experimenta um movimento de translação quando qualquer linha nele traçada se desloca paralelamente a si mesma, e sofre uma rotação quando suas partículas descrevem trajetórias circulares em torno de uma reta denominada eixo de rotação. O movimento mais geral de um sólido rígido compõe-se de uma translação e uma rotação não relacionadas entre si. Os giros dos corpos são suscitados por forças exercidas sobre linhas que não passam por seus centros de gravidade. A magnitude da velocidade angular ou de rotação é maior quanto maior for a distância do ponto de aplicação da força em relação ao centro.


Tipos de forças. Todos os efeitos dinâmicos observados na natureza podem ser explicados mediante quatro tipos de interações físicas: gravitacionais, eletromagnéticas, fracas e fortes. As interações de origem gravitacional produzem forças de atração entre partículas materiais, amplamente descritas pelas teorias causal e da relatividade, respectivamente de Newton e Einstein.
As forças de atração e repulsão eletromagnéticas, determinadas pelas equações de James Clerk Maxwell, surgem da consideração simultânea de outras duas: a eletrostática, própria de cargas elétricas em repouso, e a magnética, que afeta as cargas em movimento. Einstein contribuiu com vários elementos que possibilitaram a generalização das teorias anteriores e explicaram muitos fenômenos derivados das hipóteses relativistas.
A interação fraca se verifica em grande número de transformações radioativas que têm lugar no núcleo do átomo. Acredita-se que as interações fraca e eletromagnética estejam relacionadas, o que daria lugar à interação eletro-fraca. Finalmente, a interação forte é exclusiva dos núcleos atômicos e responsável pela coesão entre as diferentes partículas que os compõem, apesar das intensas forças de repulsão elétrica que se produzem no interior dos átomos.
As magnitudes dessas quatro forças fundamentais são muito diversas. Numa escala de interação gravitacional de valor inicial igual a 1, a intensidade da interação fraca será de 1034; a da interação eletromagnética, de 1037; e a interação forte, de 1039. O campo de influência das forças, no entanto, decresce em relação inversa a sua intensidade, pelo que os efeitos gravitacionais regem a dinâmica do universo, determinando as órbitas dos planetas, o movimento das estrelas e o das galáxias. As interações fraca e forte, pelo contrário, não são significativas fora dos limites do núcleo atômico.
Desde o início do século XX tentou-se unificar sob os mesmos princípios e expressões matemáticas os quatro tipos conhecidos de interação. Iniciados por Albert Einstein e continuados por grande número de pesquisadores, esses trabalhos conseguiram, na segunda metade do século, reduzir a questão teórica a duas classes de perturbações: a gravitacional e a eletromagnética débil-forte.
Magnitudes fundamentais da dinâmica. Na maior parte das situações empíricas, as forças não são constantes nem funções conhecidas do tempo, mas em cada momento dependem da posição ocupada pelas partículas a elas submetidas. Assim, o estudo das forças engloba outras magnitudes além das que já foram vistas. Diz-se que uma força realiza um trabalho quando, ao atuar sobre um corpo em repouso durante certo tempo, desloca-o por determinada distância na direção em que ela se exerce. Assim, o trabalho tem a dimensão física do produto de uma força por um comprimento ou distância. A noção de trabalho dinâmico aparentemente não corresponde ao significado do termo na linguagem corrente, pois se considera que, se uma força não realiza um deslocamento, não produz trabalho (por exemplo, quando se sustenta um corpo a uma altura fixa ou se empurra um volume sem conseguir movê-lo).
Os esforços musculares, no entanto, consomem energia pelas rápidas contrações ocasionadas como respostas aos impulsos nervosos que se produzem nas células, pelo que é possível compatibilizar os dois conceitos de trabalho. A unidade de trabalho no sistema internacional é o joule, que corresponde ao trabalho realizado pela força de um newton ao deslocar um corpo ao longo de um metro.
Em física, define-se energia como a capacidade de desenvolver um trabalho. A dinâmica tradicional considera dois tipos de energia mecânica: potencial, dada pela posição do corpo, e cinética, devida a seu movimento. A interconversão entre essas duas classes de energia realiza-se pelo movimento das partículas, obedecendo a lei da conservação da energia. A termodinâmica estabelece que a energia não se cria nem se destrói, mas apenas se transforma de um estado para outro, ou seja, se conserva. Por exemplo, os motores de indução convertem energia elétrica em energia mecânica e os geradores e dínamos realizam o processo inverso.
O calor é uma forma degradada de energia. James Joule comprovou experimentalmente que é possível transformar energia cinética em energia térmica. Em decorrência disso, as unidades de calor, energia e trabalho devem ser as mesmas, ou possuir expressões numéricas de equivalência. O joule emprega-se como unidade comum a todas essas grandezas, enquanto a caloria, unidade tradicional de calor, equivale a 4,18 joules.
Em alguns casos pode ser interessante deduzir fisicamente a velocidade com que se pode realizar um trabalho e, portanto, desenvolver forças. O conceito físico com que se expressa essa rapidez de liberar energia denomina-se potência e sua unidade no sistema internacional é o watt, equivalente a um joule de trabalho desenvolvido durante um segundo.


Visão energética dos sistemas de forças. Como condição indispensável para o desenvolvimento de uma força, a física moderna defende a existência de um campo de energia no espaço circundante. Assim, foram formuladas teorias físicas gerais e abstratas para as quais as forças são efeitos da energia e seus valores podem ser determinados pelo cálculo diferencial e integral. Apesar da abordagem singular, essas teorias têm que se mostrar coerentes com a mecânica clássica, quando são aplicadas aos mesmos sistemas, em iguais circunstâncias, e ao descreverem uma realidade física única.
A energia é uma grandeza escalar, já que pode ser expressa sem necessidade de determinação de direção e sentido. As forças, porém, são grandezas vetoriais que devem ser expressas em intensidade ou módulo, direção ou linha de ação ao longo da qual se exercem, e o sentido para o qual se voltam. Em virtude da natureza vetorial das forças, convencionou-se representá-las por meio de setas ou segmentos orientados, que coincidem com a imagem física dos entes matemáticos denominados vetores. A dinâmica recorre às teorias geométricas e analíticas para desenvolver seus cálculos e emprega sistemas de referência baseados em conceitos matemáticos ideais, que mais tarde são confrontados com a realidade. Assim, o sistema de coordenadas cartesianas baseia-se nas projeções dos pontos que delimitam o vetor sobre três eixos perpendiculares entre si, centrados numa origem. As coordenadas polares ou as cilíndricas utilizam, contudo, os ângulos de orientação dos vetores em relação aos mesmos eixos. Dessa maneira, o vetor-força se representa por três coordenadas espaciais, por um valor numérico que equivale a seu módulo e pelo ângulo que forma com os eixos do sistema de referência.