Átomo - BioMania
O melhor portal biológico da internet!



Átomo


 Biofísica

Desde a antiguidade o homem suspeitava que o mundo físico fosse formado por partículas menores, invisíveis ao olho humano e, segundo alguns pensadores da Grécia antiga, indivisíveis.
Graças a essa propriedade, que lhes foi atribuída erroneamente, tais partículas receberam o nome de átomos, termo grego que significa "o que não pode ser dividido".

Conceitos e evolução histórica. Alguns dos mais destacados filósofos gregos, como Leucipo e Demócrito, procuraram determinar a estrutura da matéria, afirmando que não seria razoável supor que ela pudesse se subdividir indefinidamente. Segundo eles, deveria existir um limite, que permitisse alcançar uma determinada porção, ainda que ínfima, a partir da qual uma posterior fragmentação não seria possível. Essa teoria, no entanto, só sairia do campo da mera especulação dois mil anos mais tarde, quando o conceito de átomo foi incluído no âmbito da ciência.
No século XIX, o químico inglês John Dalton, analisando os resultados obtidos por ele e por outros pesquisadores ao pesarem as quantidades de reagentes e de reações entre diferentes compostos, deduziu as chamadas leis estequiométricas, sobre as proporções e relações quantitativas que regem as reações químicas, entre as quais se incluem as leis das proporções definidas e das proporções múltiplas. A primeira afirma que, quando dois elementos se unem para formar um determinado composto, sempre o fazem em proporções e em pesos definidos e fixos. Segundo a lei das proporções múltiplas, quando dois elementos reagem entre si para formar mais de um composto, as proporções dos elementos presentes nesses diferentes compostos estão relacionadas por meio de números inteiros. Um exemplo desse tipo de reação ocorre quando se combina oxigênio e cloro, dando origem aos óxidos hipocloroso, cloroso, clórico e perclórico.

Robert Boyle e Edme Mariotte enunciaram a lei dos gases, que quantificava a relação existente entre seu volume e pressão. O fato de apresentarem elevada compressibilidade quando submetidos a altas pressões, indicava que os gases eram constituídos de partículas separadas por grandes distâncias. Dessa forma, concluiu-se que a matéria não era contínua. Esse e outros fenômenos físicos só encontraram explicação na teoria atômica.
Ao final do século XIX, o físico alemão Wilhelm Conrad Roentgen descobriu a existência de um tipo singular de radiação, denominada raios X, capaz de atravessar um objeto material, sendo parte dessa radiação incidente absorvida por ele. Observou-se também que a quantidade de energia absorvida por um corpo era diretamente proporcional a sua espessura e ao peso atômico do material de que era constituído. Aos trabalhos de Roentgen somaram-se as pesquisas do inglês Sir Joseph John Thomson, que conseguiu isolar o elétron, partícula carregada negativamente, que parecia fazer parte da estrutura do átomo; e o desenvolvimento da teoria da radioatividade, pelo casal Pierre e Marie Curie e por Henri Becquerel.

O neozelandês Ernest Rutherford demonstrou que, ao bombardear-se uma chapa metálica com partículas radioativas alfa, apenas uma pequena fração dessas partículas sofria um desvio de trajetória, após atravessar a chapa. Rutherford concluiu que isso ocorria porque as partículas não encontravam na chapa obstáculos que provocassem uma deflexão em sua trajetória. Baseado nisso, propôs um modelo de estrutura atômica na qual os elétrons, partículas de dimensões mínimas e grande mobilidade, giravam em torno do núcleo -- região central do átomo e local onde se concentrava a maior parte de sua massa -- descrevendo órbitas similares às dos planetas em torno do Sol. Dessa forma, a maior parte do átomo se encontraria vazia, com praticamente a totalidade de sua massa condensada no núcleo, que mediria cerca de dez mil vezes menos que o átomo.
Em 1912, Frederick Soddy descobriu que os átomos de um mesmo elemento poderiam apresentar massas nucleares diferentes. Paralelamente, Thomson percebeu que um feixe de átomos de neônio submetido à ação de um campo magnético se separava em dois feixes, que seguiam trajetórias diferentes. Dessa experiência Thomson deduziu a existência de duas "formas" para o mesmo elemento, as quais receberam o nome de isótopos.


O modelo de Rutherford, entretanto, apresentava sérias lacunas. Como era possível que os elétrons girassem em torno dos núcleos sem emitir energia radiante? Com o auxílio da teoria quântica, formulada pelo alemão Max Planck, o dinamarquês Niels Bohr confirmou que os elétrons só podiam mover-se em determinadas órbitas ou níveis energéticos, nos quais não absorviam nem emitiam energia; a absorção ou emissão de energia ocorreria somente quando um elétron saltava de um nível energético para outro.
A hipótese de Bohr permitia explicar a configuração apresentada pelos espectros de emissão (conjunto de raias correspondentes aos comprimentos de onda da radiação luminosa emitida pelos átomos) do átomo de hidrogênio -- elemento que apresenta apenas um elétron --, mas era ainda insuficiente para explicar a configuração dos espectros de átomos com um número mais elevado de elétrons.
Coube ao alemão Arnold Sommerfeld introduzir modificações no modelo de Bohr, postulando órbitas elípticas ao invés de circulares e introduzindo uma série de parâmetros que corrigiam os desvios encontrados entre o modelo antigo e as observações experimentais. A maior falha do modelo de Bohr advinha do fato de que, embora baseado em conceitos da mecânica clássica, introduzia princípios que não podiam ser explicados por essa teoria.
Louis Victor de Broglie, Erwin Schrodinger e Werner Heisenberg desenvolveram, em conjunto, uma nova teoria mecânica, denominada ondulatória. Essa teoria estava fundamentada na hipótese proposta por Broglie de que todo corpúsculo atômico pode comportar-se como onda e como partícula. Heisenberg postulou, em 1925, seu famoso princípio da incerteza, segundo o qual não era possível determinar simultaneamente, com precisão, a posição e a velocidade de uma partícula subatômica. Dessa forma, a idéia de órbita eletrônica perdia o sentido, dando lugar ao conceito de probabilidade de encontrar um determinado elétron em uma dada região do espaço, em um instante qualquer. O átomo, portanto, diferentemente do que haviam proposto Dalton e os antigos filósofos gregos, não era indivisível, constituindo, na verdade, um microuniverso de enorme complexidade. Seu estudo levava ao próprio limite da realidade da matéria e fazia desvanecer as noções comuns de certeza e precisão, espaço e tempo, energia e matéria.

Partículas e parâmetros atômicos. Os elétrons, de carga negativa e massa infinitesimal, movem-se em órbitas ao redor do núcleo atômico. Esse último, situado no centro do átomo, é constituído por prótons, partículas de carga positiva, com uma massa equivalente a 1.837 vezes a massa do elétron, e por nêutrons, partículas sem carga e de massa ligeiramente superior à dos prótons. O átomo é, dessa forma, eletricamente neutro, uma vez que possui números iguais de prótons e elétrons.
O número de elétrons de um átomo é denominado número atômico, sendo esse valor utilizado para estabelecer o lugar que um elemento ocupa na tabela periódica, ordenação sistemática dos elementos químicos conhecidos. Cada elemento caracteriza-se por possuir um determinado número de elétrons, que se distribuem nos diferentes níveis de energia do átomo, ocupando uma série de camadas, designadas pelos símbolos K, L, M, N, O, P e Q. Cada uma dessas camadas possui uma quantidade fixa de elétrons. Assim, a camada K, mais próxima do núcleo, comporta somente dois elétrons; a camada L, imediatamente posterior, oito, e assim por diante. Os elétrons da última camada, os mais afastados da região central, são responsáveis pelo comportamento químico do elemento, sendo por isso denominados elétrons de valência.
Outro parâmetro importante no estudo dos átomos é o número de massa, equivalente à soma do número de prótons e nêutrons presentes no núcleo. Um átomo pode, por diversos mecanismos, perder elétrons, carregando-se positivamente, e nesse caso é chamado de íon positivo. Por outro lado, ao receber elétrons, um átomo se torna negativo, sendo denominado íon negativo. O deslocamento dos elétrons provoca uma corrente elétrica, que dá origem a todos os fenômenos relacionados à eletricidade e ao magnetismo.
Na segunda metade do século XX foram feitas inúmeras pesquisas sobre a natureza da força que une os componentes do núcleo. Atualmente, os físicos reconhecem a existência de quatro forças básicas: além da força da gravidade e do magnetismo, a chamada interação nuclear forte, responsável pela coesão do núcleo, e a interação nuclear fraca.
Tais forças de interação nuclear são responsáveis em grande parte pelo comportamento do átomo. Entretanto, as propriedades físicas e químicas de um  elemento são determinadas predominantemente por sua configuração eletrônica (fórmula estrutural da disposição dos elétrons em torno do núcleo) e, em especial, pela estrutura da última camada de elétrons, ou camada de valência.
Observando-se a tabela criada pelo russo Dmitri Ivanovitch Mendeleiev, na qual os elementos químicos são ordenados em grupos verticais e períodos horizontais, conclui-se que as propriedades atribuídas a cada um desses elementos se repetem ciclicamente; daí o nome de tabela ou sistema periódico de elementos.
Um parâmetro cuja determinação causou grandes problemas aos cientistas foi o peso do átomo. Devido a suas dimensões, um átomo não é suscetível de pesagem direta e foi necessário encontrar um artifício que permitisse relacionar os pesos dos diversos átomos. A unidade escolhida foi o chamado peso de combinação, correspondente ao peso de um átomo que se liga com uma parte de hidrogênio e oito de oxigênio.
Cabe mencionar, ainda, dois aspectos relacionados à estrutura atômica e ao comportamento de determinados tipos de átomos. Primeiro, a existência dos já mencionados isótopos, átomos de um mesmo elemento, com mesmo número de prótons, porém com uma quantidade diferente de nêutrons; segundo, o fenômeno da radioatividade. Através desse processo, alguns átomos atuam como emissores de uma radiação nuclear, que constitui a base do uso da energia atômica.